ПИСЬМЕННАЯ РАБОТА ПО МАТЕМАТИКЕ

для поступающих в магистратуру

1. Вычислить предел

$$\lim_{R \to +\infty} \int_{-R}^{R} \frac{\sin \frac{x}{2}}{2x - i} \, dx.$$

2. Функция $u: \mathbb{R}^2 \to \mathbb{R}$ является решением задачи Коши

$$\frac{\partial u(x,y)}{\partial x} - x^2 \frac{\partial u(x,y)}{\partial y} = 0, \quad x \in \mathbb{R}, \quad u \in \mathbb{R},$$

$$u(0,y) = y, \quad u \in \mathbb{R}.$$

Найти функцию u(x,y) и вычислить криволинейный интеграл

$$\oint_{\gamma} u(x,y) \, dy,$$

где кривая γ — это граница области $\left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid \begin{array}{c} x^2 + y^2 < 1, \\ y < 0 \end{array} \right\}$, ориентированная против часовой стрелки.

3. Найти минимум функционала

$$J(u) = \int_{0}^{1} (x+1) \exp\left(\frac{u'(x)}{2}\right) dx, \quad u \in C^{2}[0,1],$$

на множестве $M=\left\{ u\in C^2[0,1] \mid u(0)=0,\ u(1)=0 \right\}$, и указать экстремаль, доставляющую минимум.

- **4.** Три землекопа подрядились вскопать поле, каждый имеет две лопаты, а сломать лопату во время работы можно с вероятностью $\frac{3}{4}$. Найти вероятность того, что поле будет полностью вскопано, при условии, что хотя бы один землекоп сломал обе лопаты.
- **5.** Решить задачу Коши

$$(u'(x))^2 + u''(x) = u'(x),$$

$$u(0) = 0, \quad u'(0) = 2.$$

6. Решить уравнение

$$u(x) = \frac{i}{2} \int_{0}^{x} u(t) dt - \frac{i}{2} \int_{x}^{2\pi} u(t) dt - \exp(ix), \quad 0 \le x \le 2\pi.$$

7. Решить задачу Коши для уравнения Шрёдингера

$$i\frac{\partial u(t,x)}{\partial t} = \frac{\partial^2 u(t,x)}{\partial x^2}, \quad t > 0, \quad x \in \mathbb{R}$$

 $u(0,x) = x\sin(x), \quad x \in \mathbb{R}.$

8. Решить задачу Коши для уравнения теплопроводности

$$\frac{\partial u(t, x, y)}{\partial t} = \Delta u(t, x, y), \quad t > 0, \quad (x, y) \in \mathbb{R}^2,$$
$$u(0, x, y) = \exp(y - x^2), \quad (x, y) \in \mathbb{R}^2.$$

9. Решить задачу Коши для волнового уравнения

$$\frac{\partial^2 u(t,x,y,z)}{\partial t^2} = \Delta u(t,x,y,z), \quad t > 0, \quad (x,y,z) \in \mathbb{R}^3,$$

$$u(0,x,y,z) = \frac{1}{1 + (2x + 2y - z)^4}, \quad (x,y,z) \in \mathbb{R}^3,$$

$$\frac{\partial u(0,x,y,z)}{\partial t} = 0, \quad (x,y,z) \in \mathbb{R}^3.$$

10. Решить задачу Дирихле для уравнения Лапласа

$$\Delta u(x,y) = 0, \quad x^2 + y^2 < 1,$$

$$u(x,y)\Big|_{x^2 + y^2 = 1} = y(x+y)^2.$$

ОТВЕТЫ ПО МАТЕМАТИКЕ

для поступающих в магистратуру

ЗАДАЧА	OTBET
1.	$\lim_{R \to +\infty} \int_{-R}^{R} \frac{\sin \frac{x}{2}}{2x - i} dx = \frac{\pi}{2\sqrt[4]{e}}$ $\int_{-R}^{R} \frac{\exp\left(\frac{ix}{2}\right)}{2x - i} dx \to 2\pi i \operatorname{res}_{z = \frac{i}{2}} \frac{\exp\left(\frac{iz}{2}\right)}{2z - i} = \frac{\pi i}{\sqrt[4]{e}}, \int_{-R}^{R} \frac{\exp\left(-\frac{ix}{2}\right)}{2x - i} dx \to 0$
2.	$u(x,y) = \frac{x^3}{3} + y, \qquad \oint_{\gamma} u(x,y) dy = \frac{\pi}{8}$
3.	$u_*(x) = 4x \ln 2 - 2(x+1) \ln(x+1), \qquad J(u_*) = \frac{4}{e}$
4.	$\frac{112}{139} = 1 - P(A B) = 1 - \frac{P(AB)}{P(B)} = 1 - \frac{27\cdot27}{4096-343} = 1 - \frac{27\cdot27}{27\cdot139},$ A — поле не вскопано (все сломали обе лопаты), $B - \text{хотя бы один сломал обе лопаты, } A \subset B,$ $P(AB) = P(A) = \left(\frac{3}{4} \cdot \frac{3}{4}\right)^3 = \frac{27\cdot27}{64\cdot64} = \frac{27\cdot27}{4096},$ $P(B) = 1 - \left(\frac{1}{4}\right)^3 - 3 \cdot \left(\frac{3}{4} \cdot \frac{1}{4}\right) \cdot \left(\frac{1}{4}\right)^2 - 3 \cdot \left(\frac{3}{4} \cdot \frac{1}{4}\right)^2 \cdot \left(\frac{1}{4}\right) - \left(\frac{3}{4} \cdot \frac{1}{4}\right)^3 =$ $= 1 - \frac{64+9\cdot16+27\cdot4+27}{64\cdot64} = 1 - \frac{343}{4096} = \frac{3753}{4096} = \frac{27\cdot139}{4096}$
5.	$u(x) = \ln(2e^x - 1), x > -\ln 2$

ЗАДАЧА	OTBET
6.	$u(x) = (\pi i - 1 - ix) \exp(ix),$ $u'(x) = iu(x) - i \exp(ix), u(0) + u(2\pi) = -2$
7.	$u(t,x) = (x \sin x - 2it \cos x) \exp(it)$
8.	$u(t, x, y) = \frac{\exp\left(t + y - \frac{x^2}{4t+1}\right)}{\sqrt{4t+1}}$
9.	$u(t, x, y, z) = \frac{1}{2} \left(\frac{1}{1 + (2x + 2y - z + 3t)^4} + \frac{1}{1 + (2x + 2y - z - 3t)^4} \right)$ $u(t, x, y, z) = f(t, 2x + 2y - z),$ $f_{tt}(t, \xi) = 9f_{\xi\xi}(t, \xi), f(0, \xi) = \frac{1}{1 + \xi^4}, f_t(0, \xi) = 0,$ $f(t, \xi) = \frac{1}{2} \left(\frac{1}{1 + (\xi + 3t)^4} + \frac{1}{1 + (\xi - 3t)^4} \right)$
10.	$u(t,x,y)=r\sin\varphi+rac{r}{2}\cos\varphi-rac{r^3}{2}\cos3\varphi=rac{2y+x-x^3+3xy^2}{2},$ где $x=r\cosarphi, y=r\sinarphi$

Стоимость каждой задачи — два очка.